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ABSTRACT

Interval analysis is applied to the fixed-point problem x - *(x) for
continuous +: S + S, where the space S is constructed from Cartesian products of
the set R of real numbers, with componentwise definitions of arithmetic
operations, ordering, and the product topology. Spaces of this kind include
many of the usual Hilbert and Banach spaces important in analysis. With the aid
of an interval inclusion 0: IS + IS in the interval space IS corresponding to S,
the interval iteration process XN+ 1 X- n 4(XN) is shown to converge if the

initial interval X0 contains a fixed point x* of *i on the other hand,

divergence of the iteration (XN4+ = 0 for some N) proves that X0 contains no
fixed points of *, while O(N) c X for some N establishes the existence of a

fixed point x* E X0 and guarantees the convergence of the interval iteration.

Each step of interval iteration provides lower and upper bounds for fixed points
of * in the initial interval, from which approximate values and guaranteed error
bounds for them can be obtained directly. In addition to interval iteration,
operator equation and dissection methods are also considered briefly.

Since the theory of interval iteration applies directly when only finite
subsets of 8, IS are used, it is adaptable immediately to actual computation. A
numerical example is given of the use of interval iteration for the approximate
solution of a nonlinear integral equation of radiative transfer. It is shown
that numerical results with acceptable, guaranteed accuracy can be obtained with
a modest amount of computation for an extended range of the parameter involved.

AMS (MOS) Subject Classifications: 47H10, 58C30, 65G10, 65J10, 65J20, 65R20

Key words: Fixed-point problems, Interval iteration, Error analysis, Nonlinear
integral equations

Work Unit Number 3 - Numerical Analysis and Scientific Computing
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Scintiic omutaionis evtedlarelytoproesss or numerical an

finite systems of linear and nonlinear equations, all problems which can be
formulated abstractly as a fixed-point problem in some suitable space. Since
the computation is carried out on a computer, and not in the space in which the
problem is posed, methods of discrete approximation are used, and ordinarily
detailed analysis is required to estimate the reliability and accuracy of the
flood of floating-point numbers produced, as w3Lshi4ae,.a.o~I
terms of the original problem. In this report, which is the text of an invited
paper for the Special Session on Fixed Points and Operator Equations at the 198
Summer Meeting of the American Mathematical Society in Albany, New York,'it is
shown that interval methods can be used to overcome many of the difficulties of
this kind which arise in scientific computation. The goal is to have the
computation itself provide the required information about the reliability and
accuracy of the computed results.

It is shown that interval iteration can be used to prove existence or
nonexistence of solutions in given regions, and to obtain lower and upper bounds
for solutions in those regions. The transition tc actual computation coisists
simply of identification of the floating-point numbers available on a computer
with a finite set of elements of the space in question, for example, as step
functions with floating-point values, and directed rounding from the space to
this finite subspace . Naturally, the computer used has to support interval
arithmetic by having 1~th upward and downward rounding of arithmetic operations
available, as required 4the IEEE Standard for floating-point arithmetic. This
capability is essential ~pr accurate, reliable computation.

A numerical example is given in which a nonlinear integral equation of
radiative transfer is solved for an extended range of parameters on a personal-
size microcomputer in only a few seconds. For suitable initial intervals, this
modest computation gives a guarantee of the existence of the solution of the
integral equation, and proves that the numerical results obtained are accurate
to better than 10%. In other cases, the computation shows that the initial
interval is not large enough to contain a solution of the integral equation,
which is also valuable information when exploring for regions in which solutions
will lie.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.



INTERVAL METHODS FOR FIXED-POINT PROBLEMS

L. B. Rall

1. Real saces. Here, the fixe*-point problem

(1.1) x - O(x)

will be considered for continuous operators *: S + S acting in spaces S which

can be constructed in a simple way from the set R of real numbers. This

construction is based on the Cartesian product

(1.2) P R

of the real numbers over an Index set A. Elements f of P are vectors with real

compoents denoted by fa or f(a), a E A.

For example, if A {1,2,...,n} is the set of the first n positive

integers, then P is the set Rn of n-dimensional real vectors f - (flf 2,...fn d

if A - fa,bJ, an interval, then P is the set Rfa,b] of all real-valued functions

f on (a,b], with f,= f(a).

In general, the product set P can thus be considered to be the set of all

real-valued functions on A, P - {f I f: A + R) [I.

The set P will now be equipped with arithmetic operations, a partial

ordering, and a topology, all taken from the underlying set R of real numbers.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Definition 1.1. The product set P given by (1.1) is called a basic real

apace over A if:

Mi The arithmetic operations +,- *,Iare defined in P by

(1.3) (f * g)a = f ga of aE A,

for * c {+p ,* } with divisors restricted to the set

(1.4) D = g I go 91 0, a E A);

(ii) P is partially ordered by j, where

(15)f < g if f f (x go, a~ E A;

(iii) The topology of P is the product topology of the ordinary

(metric) topology of the reals (12].

Properties of arithmetic operations in a basic real space P, such as

conmmutivity of addition and multiplication, thus follow from the corresponding

properties of real arithmetic, and the partial ordering induced in P by the

order relationship for real numbers results in P being a complete lattice (5].

A basic real space will be a linear space if multiplication of a vector

f E P by a scalar a E R is defined by multiplication of f by the vector in P

with all components equal to a. Vectors which have all components equal (that

is, which are constant on A), will be denoted on occasion by this common value,

in particular, the notation 0 and 1 will be used for the vectors such that 0.

o and lo - 1 for all a E A, respectively. Thus, for example, for A - (0,1], the

basic real space P - R[0,1] includes the elements of the Banach space C[0,1] of

continuous real functions on [0,11, and the Hilbert space L 2 [0,1] consisting of
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all real functions which are square-integrable in the sense of Lebesgue on

[0,1].

Instead of the entire space P, attention can be restricted to the subspace

of P consisting of bounded elements f, for which

(1.6) If - Sup If I < + ,
QE A 01

On this subspace, divisors have to be restricted to the set of elements g which

have bounded reciprocals 1/g.

The absolute value I I and other functions of elements of basic real spaces

are again defined componentwise, provided this makes sense for the given

function.

In order to consider higher-dimensional problems, a more general class of

spaces is introduced by the following recursive definition.

Definition 1.2. A real space S is either a basic real space or the

Cartesian product of real spaces. In the latter case, arithmetic operations and

partial ordering of the product space are defined componentwise on the basis of

the corresponding operations and relations in the factor spaces, and the

topology for the product space is the product of the topologies of its factors.

For example, the real space S - Rn x Rm consists of all functions which map

the n-dimensional space Rn into the m-dimensional space Rm.

Real spaces will sometimes be called R-upamee for brevity.

As is generally known, an overwhelming number of theoretical and applied

mathematical problems can be expressed in the deceptively simple form (1.1). In

this paper, this general problem will be discussed from the standpoint of

interval analysis J171, 118], 13], [4]. The next sections will introduce the

necessary ideas of interval spaces and operators.
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2. Interval spaces. Given a real space S, the corresponding interval

space IS is constructed in the same way as the set IR of nonempty, closed,

bounded intervals

(2.1) [a,b] - (x I -< a < x < b < +.}

is obtained from the set of real numbers R. In IR, the operations of interval

aritboatic (17], (18] are defined by

(2.2) [a,b] * [c,d] - {z I z - x * y, x E [a,b], y E [c,d]),

• E {+, -, o, /}, with divisors restricted to the set

(2.3) D - (fc,d] I cd > 0),

that is, to the set of intervals which do not contain zero. Intervals [c,d]

belonging to D will have bouried reciprocals

(2.4) [c,d] - 1 - (1/d , 1/c].

It is important to note that intervals do not form a group with respect to

addition, since additive inverses do not exist in general; for example, one has

[0,1] - [0,1] - [-1,1] instead of [0,0].

A partial ordering can be defined in IR by, for example

(2.5) [a,b] < [c,d] iff b < c,
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([17], p. 7). There is also a metric topology for intervals [17]. Use of these

ideas leads to the following definition.

Definition 2.1. The interval space IS corresponding to a real space S is

the set of intervals (a,b] analogous to (2.1), where a,b are bounded elements of

S and a < b in the partial ordering on 8, with componentwise definition of

interval arithmetic and partial ordering based on (2.2) and (2.5) respectively,

and topologized by the product of the metric topology for intervals ([17], Chap.

4).

In IS, division is restricted to intervals with bounded reciprocals.

Elements x of S can be identified with the tbgsnerate intervals [x,x3 E IS

having equal lower and upper endpoints. The notation

(2.6) x [ Ix,x]

will be used throughout to indicate this identification.

The interval space IS corresponding to a real space S can also be

constructed from the intervals IR of real numbers R according to the recipe for

S. keeping only intervals with bounded endpoints. Although the real space S is

a linear space, the corresponding interval space IS will not be a linear space,

because interval addition does not have the group property, as noted above.

Since intervals are sets, the inclusion relation c is defined in IR, and

provides another partial ordering of this set [5]. Furthermore, the

intersection [a,b] ) [c,d] of two intervals in IR is either an interval or the

empty set 0. These ideas extend componentwise to interval spaces.

Definition 2.2. If F,G c IS, where IS is an interval space, then F c G

means

(2.7) F c G s, a E A.
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Definition 2.3. If F,G F IS, an interval space, and FC n G. 0 for some

a c A, then the intersection of F and G is said to be empty, and one writes

(2.8) F n G =0.

Thus, the intersection of elements of an interval space will either be an

element of that space or empty. On occasion, elements of an interval space IS

will be referred to simply as intervals.

Since the intersection of a nested sequence of closed, nonempty subsets of

R is nonempty (331, it follows that for intervals X, E IR such that

(2.9) X X2 :X 3  ... X n

one has

(2.10) n X 0 ,

n-0 n

since elements of IR are closed and nonempty by definition. It follows from

Definition 2.4 by construction and the Cantor theorem (33] that the same result

holds in interval spaces IS, that is, if (2.9) holds for Xi E IS, i = 1,2,3,...,

then (2.10) is true [281.

3. Interval inclusions of real operators. Suppose that S,T are real

spaces, and IS, IT are the corresponding interval spaces. An operator f: S + T

will be called a real operator, and an operator F: IS + IT will be called an

interval operator. Although real operators can be classified as linear or

nonlinear, this cannot be done for interval operators, since the interval spaces

IS, IT are not linear spaces, and the definition of linearity for an operator

depends on a linear substructure for the spaces involved.

-6-



Definition 3.1. The interval operator F: IS + IT is said to be (inclusion)

cimoe if for X,Z E IS,

(3.1) X c Z implies F(X) c F(Z).

Definition 3.2. The interval operator F: IS + IT is said to contain the

real operator f: S + T if

(3.2) f(X) = {y I y - f(x), x 6 X1 c F(X), X E IS.

This is symbolized by f E F, and F is said to be an interval inclusion of

f. If F is monotone, then it is called a monotone inclusion of f.

Definition 3.3. The real operator f: S + T is said to be a restriction of

the interval operator F: IS + IT if

(3.3) f(x) = F(x) = F([x,x]), x E X,

in the sense of the identification (2.6) of elements of S with degenerate

intervals in IS. If (3.3) holds for a (monotone) inclusion F of f, then F is

called a (monotone) interval extension of f (17].

Interval extensions of rational functions can be constructed by the use of

interval arithmetic [17], [18], [3], [4]. The class of operators for which

interval extensions are available can be broadened by the use of interval

extensions of elementary functions, and so on. Integral operators can be

extended by the use of interval integration [9], [26]. In actual numerical

computation, it is usually impossible to realize the restriction property (3.3);

however, interval arithmetic with directed rounding can be used to construct

interval inclusions of real operators (15], [17], [18]. The results given below

-7-



require only the availability of interval inclusions F of real operators f, and

do not depend on the restriction property.

4. Interval iteration. Suppose that #: S + S is a continuous operator in

a real space S, and *: IS + IS is an interval inclusion of *.

Definition 4.1. The sequence (Xn } of elements of IS defined by

(4.1) Xn+1= Xn n Od n = ,1,2,...,

is said to be generated by interval iteration with initial interval X0 and

itroation operator 0.

Definition 4.2. If a positive integer N exists such that

(4.2) X. n =(X,) 0,

then the interval iteration (4.1) is said to diverge; otherwise, it converges to

the limit

(4.3) X* - n X E IP.
n-0 n

The existence of X* in the case of convergence follows from the theorem of

Cantor [33] cited in 12, since the iteration sequencie {Xn) is a nested sequence

(2.9) of nonempty intervals in S. If the iteration diverges, then the iteration

sequence will consist only of the N intervals X0, X1 , ... , XN. The following

theorems relate the convergence or divergence of the interval iteration (4.1) to

the existence or nonexistence of a fixed point of * in the initial interval X.
128].
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Theorem 4.1. If the initial interval X0 contains a fixed point of *, then
the interval iteration (4.1) will converge to a limit X* which contains all

fixed points x* of * which belong X0 .
The proof of this theorem [28J follows from the simple observation that if

x* E Xn is a fixed point of *, then x* (X n), so x* E Xn+1, and thus, by

mathematical induction, the elements of the iteration sequence (X n will be

nonempty and contain all fixed points of * which belong to X0
Theorem 4.2. If the interval iteration (4.1) diverges, then the initial

interval X0 does not contain a fixed point x* of *.

This is the contrapositive of Theorem 4.1.

Divergence of interval iteration will be observed in a finite number of

steps if it occurs. On the other hand, interval iteration will converge if X0

is large enough to include at least one fixed point of f. Interval and ordinary

iteration will be compared in more detail in the next section. The next

theorems give sufficient conditions for the convergence of interval iteration.

Theorem 4.3. If

(4.4) (XN) C XN

for some positive integer N, then a fixed point x* E XN C X0 of * exists, and
the interval iteration (5.1) converges to the limit X* given by (4.3), and

X* C X*.

The existence of x* EXN follows from (4.4) by the Schauder fixed point

theorem [321, since * is assumed to be continuous, and, as a subset of S, XN is
closed, convex [29], and compact. The convergence of the the interval iteration

to the limit X* with x* E X* then follows from Theorem 4.2.

-9-
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Theorem 4.4. If

(4.5) Xc (x)

for some positive integer N, then the interval iteration (4.1) converges to the

limit X* = X.

It follows from (4.1) and (4.5) that XN4+ = XN' and thus Xn = X for n > N,

which gives X* = XN by (4.3).

Theorems 4.3 and 4.4 show that it is sufficient for the convergence of

interval iteration for XN and (XN) to be comparable for the inclusion

relation c for some positive integer N.

Note that convergence of the interval iteration under condition (4.5) does

not imply the existence of a fixed point x* E XN of +. It is easy to construct

examples in which (4.5) holds, but the initial interval X0 does not contain a

fixed point of *. In this case, it seems more appropriate to say that the

interval iteration has "stalled" instead of "converged".

An example of the application of interval iteration to a nonlinear integral

equation will be given below.

5. Comparison with ordinary iteration. A customary approach to the fixed

point pro &nm (1.1) is by ordinary iteration, that is, generation of the

iteration sequence {x1 I by

(5.1) Xn+1 = *(Xn), n = 0,1,2,...,

starting from the initial point x0 .

It is well-known that if # is continuous and the iteration sequence

converges to x*, then x* is a fixed point of *; conversely, if + does not have a

fixed point, then the iteration sequence is divergent in the sense that it

-10-
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cannot converge to an element of the space. Comparison of these results with

those of §4 for interval iteration indic -ts that the conditions relating

existence or nonexistence of fixed points to convergence or divergence of the

corresponding iteration sequences are converse in a certain sense [28]. For

example, existence of a fixed point x* of f in the initial interval X0 is a

sufficient condition for the convergence of interval iteration (Theorem 4.1),

while this is a necessary condition for the convergence of ordinary iteration.

Similarly, divergence of ordinary iteration is a necessary condition for the

nonexistence of a fixed point, while divergence of interval iteration is a

sufficient condition for the nonexistence of x* in the initial interval X0 -

Thus, interval and ordinary iteration complement each other in a certain

sense, and one or the other can be used as appropriate to a given fixed point

problem. One advantage of interval iteration for numerical purposes is that it

provides lower and upper bounds for fixed points at each step. One can write

(5.1) Xn = [an, b n], n = 0, 1, 2,

where an, bn E S. For each fixed point x* c X0 of f, one has

(5.2) a0  b a an < x* < ... < bn < b 0 ,

and in the limit, for X* = [a*, b*],

(5.3) a* < x* < b*.

Thus, if one knows initially that X0 contains at least one fixed point x* of *,
then interval iteration provides a way to obtain improved approximations to x*,

with guaranteed componentwise error bounds. For

-11-
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(5.4) x = "(a + b),
n 2 n n

one has

where the norm is defined by (1.6).

Error bounds for ordinary iteration (5.1), on the other hand, are not

usually obtained from the iteration itself, but require the construction of some

majorant function E(n) such that

(5.7) x* -x I < E(n), n

Another distinction between ordinary and interval iteration arises in

actual computation, due to the fact that the sequence x ) cannot be obtained

exactly, but has to be approximated by a sequence (z I. For ordinary iteration,
n

this means that Ix* - z nI has to be estimated as a separate issue, for example,

by use of (5.7) and a bound for the approximation error Ix n- z nhe . Thus, the

n -- n

additional analysis which has to be brought to bear on the error estimation

problem can be extensive. In the case of interval iteration, however, the lover

and uperund (a n nb d are simply selected from a finite subset of S.lof S,

and the results (5.2)-(56) hold without aodification. Furthermore, this means

that a positive integer N will exist for which one observes either (4.2)

-12-



(divergence) or (4.5) (convergence). Hence, convergence or divergence of

interval iteration is observable in practice, at least in principle, while the

approximate iteration sequence {zn)I obtained by ordinary iteration can wander

indefinitely without revealing whether it is convergent or not.

It is also usual in application of ordinary iteration that the initial

point x0 has to be chosen "close enough" to x* to obtain convergence, and,

indeed, some fixed points repel the iteration sequence {xn}I for x0 arbitrarily

close to x*. As mentioned above, the initial interval X 0 simply has to be "big

enough" to include x* for interval iteration to converge. Of course, the

interval iteration may not converge to anything useful if its limit X* is too

large.

The challenge in interval iteration is to construct the interval inclusion

* of f in such a way that OWX is not grossly larger than *(X, so that

approximations and error bounds which are obtained from the computation itself

will be as accurate as possible. In particular, if * is a contraction operator
in the ordinary sense, one would want 0 to be an interval onutraction [6], or as

close to one as can be obtained with outward rounding. Mean value and Taylor

forms [7], [29] have been found to be very useful for the construction of

accurate interval inclusions of sufficiently differentiable operators in real.

spaces.

Before leaving the subject of interval iteration, it should be noted that a

substantial number of the 1200 references in a recent bibliography on interval

mathematics (12] deal with some aspects of the theory or examples of application

of this technique. Most of these studies focus on conditions under which the

inclusion (4.4) will hold, so that the interval iteration will yield a guarantee

of existence of the fixed point, as well as lower and upper bounds for it.

However, as pointed out above, interval iteration can also be useful to prove

nonexistence of fixed points, as well as to obtain bounds for fixed points known

-13-



to belong to X0 on the basis of some other argument. In addition to the

pioneering work of Moore 117], 118] substantial contributions by Alefeld 12],

Krawczyk [13], [14], Nickel [20], [21], and Wisskirchen [34] should be noted,

among others. The books by Alefeld and Herzberger (31, (4] also contain much

valuable information on this topic. The interval bibliography [11] also

contains references to proceedings of conferences on recent developments in this

rapidly growing field.

6. Operator equation methods. Interval methods can also be based on the

equivalence of the fixed point problem (1.1) to an operator equatiom

(6.1) f(x) - 0,

where f: S + S is such that f(x*) - 0 if and only if x* - *(x*). Such

equivalent problems can be constructed in many ways, for example, simply by

taking f to be defined by

(6.2) f(x) = x - OW.

In many cases, an equivalence between (1.1) and (6.1) is exploited in the

other direction; one attempts to solve (6.1) for x = x* by constructing an

iteration operator # for which x* is a fixed point, and then using ordinary

iteration (5.1). Typical examples of this are furnished by the use of Newton's

methods and its variants for the solution of operator equations (24].

Suppose that F: IS + IS is an interval inclusion of the operator f: S + S

appearing in (6.1). In searching for an initial interval X0 which contains a

fixed point x* of an equivalent operator +, the following exclusion theorim is

often useful.

-14-



Theorem 6.1. If

(6.3) 0 FM,

then the interval X does not contain a solution x x* of equation (6.1).

Since F is an inclusion of f, (6.3) contradicts the existence of an element

x* E X such that f(x*) 1 0.

7. Dissection methods. The search for fixed points of the operator

*: S + S in intervals X E IS can be carried out with the aid of a three-valued

logic A - {TRUE, ?, FALSE) and a test To such that

(a) T (X) - TRUE means X contains a fixed point x* of *;

(7.1) (b) T (X) - ? means the test is inconclusive.

(c) T (X) - FALSE means X does not contain a fixed point x* of *;

As shown above in 14, interval iteration starting from X0 = X provides an

example of such a test, with (7.1)(a) holding if (4.4) is observed, (7.1)(c) if

(4.2) is observed, and no conclusion about existence or nonexistence of x* can

be drawn if the interval iteration simply converges without (4.4) being true at

some step, for example, if (4.5) occurs with proper inclusion. In actual

computation on finite subsets S# and IS# of S and IS, one of these alternatives

will be observed in a finite number of steps, so that interval iteration can be

used as the test T Of course, other criteria for existence or nonexistence of

fixed points x* of * in X can be applied instead of interval iteration, or to
supplement it.

Suppose now that X is an interval such that T CX) - ?, and it is desired to

determine whether or not X actually contains a fixed point x* of #. Then, X can

be Giseted into intervals X(l), X(2 ), ..., X(k ), such that

-15-
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(7.2) X XM U X(2) U ... U XWk.

(The usual case k - 2 is called bisection of X.) The test T #can now be applied

to the X") i - 1,2,...,k, in turn. If no positive conclusion is reached, then

the subintervals X()for which T (x~j)) - FALSE can be discarded, and

dissection applied again to the remaining intervals until one is found vhich

contains a fixed point of f, or all are rejected. In the latter case, of

course, the original interval X is fixed-point free.

Once a subinterval has been found which contains fixed points, then

interval iteration or some other method can be used with confidence to obtain

their values, at least approximately. Dissection is most appropriate in finite-

dimensional spaces, however, even in spaces of low dimension, considerable

bookkeeping can be required to keep track of the subintervals still under

consideration, and is thus a task suitable for a computer. Furthermore, it has

been shown by Moore and Jones [19] that bisection will yield a definite

conclusion (7.1)(a) or (7.1)(c) for certain fixed point problems in a finite

number of steps. In particular, there are classes of fixed points for which

well-known sufficient conditions for their existence hold in regions surrounding

the fixed point, and these regions contain intervals in which the fixed point

lies. In this case, a positive conclusion will be reached after the dissection

has been carried out to the point that the subintervals under consideration are

sufficiently small. An example of this situation is furnished by the famous

theorem of Kantorovich on the convergence of Newton's method [241, (23], (25].

B. A nonlinear integral equation. The above results will be illustrated

by application to the numerical solution of the integral equation

(8.1)H(10) - < 1A ,A flUp ' p
2 0 it +

-16-
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which is a form of the H-equation of radiative transfer (10]. Equation (8.1)

will be considered to be the fixed point problem

(9.2) H *(H)

in the space R(0,11 of real-valued functions on the interval [0,1]. For

numerical purposes, the subset R#10,1] will be taken to the set of step

functions with constant floating-point values on the subintervals

(8.3) 01-1 , (U-1)/lO <, < i/lO - oil, i -, 1,2,...,10.

This space and the corresponding interval space IR#[0,1] give a "low resolution"

view of R[O,11 and IR[0,1 , respectively. For computational purposes, these

spaces of piecewise constant functions and intervals can be identified with the

vector space R# 10 of vectors x - (x1 1x21...,x10 ) with floating-point numbers as

components, and the corresponding interval space IR#lc of interval vectors

X - (X1,X2 1...,X1 0 ), respectively.

An interval inclusion * of the operator f defined by the right side of

(8.1) will be constructed with the aid of interval integration (9], [26], as in

[31]. Identifying an element x of R#[0,1] by the vector x in R#I0 of its

values, the integral transform of x is given by

4 10
(8 .4 ) P U dia' -0

0 -2 * ZYntUx x +ln{(L +j)/( + Uj.)1.

Pi-1 i - "t' i m 1,2,...,10. In each subinterval [piilrpt], the function

(8.4) is rounded downward or upward to a floating-point constant to obtain an

element I(x) of R# (0,11. Applied to the lower and upper endpoint functions of
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an element X of IR#[0,1], this technique yield, an inclusion I(X) c IR#[0,1] of

the interval integral transform of an element X E IR#[0,1]. The rest of the

construction of 0: IR#[0,1] + IR[O,1] defined by

(8.5) O(x) , x R#[0,1],

1 - 1 (x) #

is now done by rounded interval arithmetic in R#I0 [4], [15], [17], [18], with

the division in (8.5) carried out componentwise.

The range of values of X of physical interest is 0 < X < 1 [10]. By

ordinary methods of functional analysis, it is easy to establish that equation

(8.1) has a solution for 0 < X < 1/(2 In 2) u 0.721... (241. The same bound has

been obtained for interval iteration applied to the standard form of (8.1),

using a cruder form of interval integration than given here [22], the basic

result being that Theorem 4.3 holds for the initial interval

(86)x [i 1  1-12 11n2 ) ].
(8.6) X I [ 1 ' A in 2

Here, interval iteration will be applied to (8.1) for 0.74 < X < 1.00 in

order to extend the range of X beyond that established previously. The

iteration is performed in the "Gauss-Seidel" mode recommended by Caprani and

Madsen [9] for integral equations, in which as much updated information is used

at each step as possible, that is, the ith component #(X)i of O(X) is computed

by

(8.7) *(X)i - #(#(X)I,...,#(XiI,XiXI+I,...,XI0),

i - 1,2,...,10. Wisskirchen [34] has established the significant result that

interval iteration performed in this way converges to the same limit as when
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straightforward evaluation of O(X1 1X2 1 ... ,X10 ) is used. However, since (8.7)

uses smaller component intervals at each substage of the evaluation of OWX, one

can expect more rapid convergence. (This is another distinction between

interval and ordinary iteration, since a Gauss-Seidel version of a convergent

ordinary iteration method may diverge or converge to a different limit.)

The result. are given in Table 8.1. For each initial interval and values

of X listed, the three following columns report the number N + 1 of the

iteration at which (4.4) is observed (Existence), successive intervals agree to

five decimal places (Convergence), or (4.2) happens (Nonexistence). Convergence

in the sense of Theorem 4.4 will, of course, follow (4.4) after a certain number

of iterations, but can also occur without a guarantee of existence of a solution

if the inclusion in (4.5) is proper.

Examination of the given results reveals that relatively few iterations are

required to establish existence or nonanistence of a fixed point in the initial

interval when one of these outcomes obtains. The number of iterations needed

f or convergence, on the other hand, depends on the number of digits to which the

endpoints of successive intervals are required to agree, that is, on the

precision of the floating-point number system used. Experiments with this

example indicate that this dependence is linear, with twice as many iterations

needed to obtain convergence to twelve significant decimal digits as were

observed for six. Since step functions are relatively crude approximations to

continuous functions, particularly on the coarse subdivision of (0,1] into only

10 subintervals, it is a waste of time to insist that this interval iteration

converge to more than a few decimal places.

As observe I in [22], (311, better approximations to the solution of the

integral equation are obtained at the break points P - (0.1)i, i - 12..9

than in the corresponding subintervals, since the solution evaluated at these

points has to satisfy
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(8.8) x*(ui) E Xi n Xi+ 1 =Z i , i 1,2,...,9.

An approximation to x*(Ui) can be taken to be the harmonic mean 2ab/(a + b) of

the endpoints of Zi M [a,b], and a bound for its percentage error is then 100

times the relative width (b - a)/(a + b) of Z1 [30]. The maximum percentage

error of these approximations in the cases in which existence was proved by the

interval iteration is shown in Table 8.2. In all of these cases, accuracy to

better than 10% was achieved, and thus the results are guaranteed to be of

accuracy which is sufficient for many practical purposes, or what is sometimes

called "engineering accuracy". This accuracy was not increased by requiring the

interval iteration to converge to more decimal places.

The calculations were carried out on a Z80-based microcomputer, using the

Pascal-SC compiler of Kulisch and Wippermann [16], which provides accurately

rounded floating-point and interval arithmetic. The results clearly indicate

that by going to "higher resolution" (more subintervals of [0,1]), the range of

A for which existence of the solution of (8.1) can be proved can be extended,

and the accuracy of the numerical approximations obtained can be increased.

Computed results are given in Appendix I for X - 0.92, where it is shown

that the initial interval X0 - [1,1.75] does not contain a solution of the

integral equation, the interval iteration converges for the initial interval X0

[1,2.001, but the existence test is inconclusive, while X0 - (1,2.251 is

proved to contain a solution of the integral equation which is bounded by the

converged values of the interval iteration. Appendix II gives the source code

of the Pascal-SC program CHANSEKS with which the calculations were performed.

The microcomputers used were a Zilog MCZ-1 with the RIO' 2.06 operating system

and an INS 8000 SX with the CP/MK 2.24 operating system. Both systems gave

identical results.
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Table 8.1

Initial Lambda Existence Convergence Nonexistence1
Interval

[1,1.251 0.74

[1,1.50] 0.74 7
0.76 7
0.*78 2

(1,1.753 0.74 18
0.76 1 8
0.78 1 a
0.80 1 9
0.82 1 9
0.84 2 9
0.86 8
0.*88 9
0.90 9
0.92 3

[1,2.00] 0.86 1 11
0.88 2 12
0.90 3 13
0.92 10
0.94 10
0.96 11
0.98 12
1.00 3

11,2.25] 0.92 2 18
0.94 16
0.*96 14
0.98 12
1.00 14

(1,2.501 0.94 4 28
0.96 18
0.98 16
1.00 14

11,2.751 0.96 *27

0.98 14
1.00 16

[1,3.001 0.96 26
0.98 20
1.00 15
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Table 8.1 (Continued)

Initial Lambda Existence Convergence Nonexistence
Interval

[1,3.25] 0.96 26
0.98 20
1.00 15

[1,3.50] 0.96 20
0.98 *

1.00 *

[1,3.75] 0.96 *

*Existence established in 4 iterations using 20 subdivisions of

** undefined for the initial interval.

Table 6.2

Initial Interval Lambda Iterations Maximum Percentage Error

[1,1.75] 0.74 8 1.52 S
0.76 8 1.72 %
0.78 a 1.97 %
0.80 9 2.26 %
0.82 9 2.62 %
0.84 9 3.05 %

[1,2.00] 0.86 11 3.61 %
0.88 12 4.34 %
0.90 13 5.36 %

[1,2.50] 0.94 28 9.87 %
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APPENDIX I

Computed Results for X = 0.92

C>XQPC CHANSEK5
ENTER INITIAL INTERVAL
*[1,1.75]
ENTER LAMBDA
*0.92
EMPTY INTERSECTION AT ITERATION NUMBER 3

FOR LAMBDA - 0.92,
INTEGRAL EQUATION HAS NO SOLUTION IN THE INTERVAL HO - 1 1.000, 1.750]

H[ 11 - [ 1.00000000000, 1.190348420761
Itj 2] - [ 1.16381274032, 1.32334334049]
H[ 31 - f 1.27655952657, 1.435964180621
H[ 41 - 1 1.37089212268, 1.535121102981
H[ 51 - ( 1.45333391818, 1.624091949521
Hf 61 - [ 1.52700493008, 1.70485377468]
H[ 71 - 1 1.59374951728, 1.750000000001
Hf 81 - 1 1.65476948954, 1.75000000000]
HI 91 - [ 1.71089034579, 1.750000000001
Hf101 - ( 1.76270273459, 1.750000000001 **IMPROPER INTERVAL**

ENTER "I" FOR NEW INTERVAL, "L" FOR NEW LAMBDA, "Q" TO QUIT
*1
ENTER INITIAL INTERVAL
*[1,2.001
ENTER LAMBDA
*0.92

FOR LAMBDA - 0.92,
INTERVAL ITERATION CONVERGED AT ITERATION NUMBER 10 TO:

Hf 1] - 1 1.00000, 1.198691
Hf 21 - 1 1.16670, 1.341641
Hf 31 - [ 1.28205, 1.46512]
Hf 41 - [ 1.37845, 1.575701
Hf 51 - [ 1.46232, 1.676431
HI 61 - 1 1.53677, 1.769111
H[ 7] - [ 1.60369, 1.85498]
H[ 81 - [ 1.66437, 1.934931
Hf 9] - [ 1.71977, 2.000001
H[101 - [ 1.77063, 2.000001

**EXISTENCE OF SOLUTION NOT GUARANTEED**

ENTER "I" FOR NEW INTERVAL, "L" FOR NEW LAMBDA, "Q" TO QUIT
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*I

ENTER INITIAL INTERVAL
*(1,2.251
ENTER LAMBDA
*0.92

FOR LAMBDA - 0.92,
HYPOTHESES OF SCHAUDER THEOREM VERIFIED AT ITERATION NUMBER 2
SOLUTION OF INTEGRAL EQUATION IS BOUNDED BY:

HI 11 - ( 1.00000, 1.229181
HI 21 - [ 1.15545, 1.39469)
H[ 3] - 1 1.26068, 1.538961
HI 41 - 1 1.34893, 1.66824]
H[ 51 - 1 1.42696, 1.785591
HI 6] - [ 1.49798, 1.89285]
H[ 7] - [ 1.56386, 1.991041
Ht 8] - [ 1.62568, 2.080551
HI 9] - [ 1.68405, 2.160951
HI10] - ! 1.73910, 2.237991

DO YOU WANT TO ITERATE (Y/N)?
*y

FOR LAMBDA - 0.92,
INTERVAL ITERATION CONVERGED AT ITERATION NUMBER 18 TO:

H( 11 - [ 1.00000, 1.200691
H[ 2] - 1 1.16670, 1.34595]
HI 31 - [ 1.28206, 1.471941
HI 41 - [ 1.37845, 1.58519]
HI 51 - 1 1.46232, 1.688681
HI 6] - 1 1.53677, 1.784191
H[ 71 - 1 1.60369, 1.872911
H[ 81 - [ 1.66437, 1.95573]
HI 91 - 1 1.71977, 2.033341
H[10] - [ 1.77063, 2.10628]

**EXISTENCE OF SOLUTION GUARANTEED**

ENTER "I" FOR NEW INTERVAL, "L" FOR NEW LAMBDA, "Q" TO QUIT
*Q
KL/P-STOP
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APPENDIX II

Source Code for the Pascal-SC Program CHANSEK5

C>
PROGRAM CHANSEK5 (INPUT ,OUTPUT);

CONST DIM - 10;
TYPE DIMTYPE - 1..DIM;

INTERVAL -RECORD INF,SUP: REAL END;
IVECTOR - ARRAY(DIMTYPE]OF INTERVAL;
RVECTOR - ARRAY[DIHTYPEJOF REAL;
RMATRIX - ARRAYIDIMTYPE]OF RVECTOR;

VAR C: CHAR;ALTER,ITER: INTEGER;HTEST,SUM,LAMBDA: REAL; I,J: DINTYPE;
HINF,HSUP: RVECTOR;LO,HI: RMATRIX;HO,COEF: INTERVAL;
GO,EXIST,EMPTY: BOOLEAN;

FUNCTION INTPT ( RA: REAL ):INTERVAL;
EXTERNAL 41;

OPERATOR / ( A,B: INTERVAL )RES: INTERVAL;
EXTERNAL 85;

FUNCTION ILN ( Y: INTERVAL ):INTERVAL;
EXTERNAL 107;

PROCEDURE IREAD ( VAR F: TEXT; VAR A: INTERVAL )
EXTERNAL 92;

BEGIN (*MAIN PROGRAM*)

FOR J:-1 TO DIM DO (*Generate coefficient matrices*)
BEGIN
COEF:-ILN(INTPT(J+1)/INTPT(J)); (*First rows*)
HI(1,J]:u.COEF.SUP;L011,JJ:m.COEF.INF;

END; (*First rows*)
FOR I:=2 TO DIM DO
BEGIN (*Rows 2,...,DIM*)

FOR J:-1 TO (DIM-i) DO
BEGIN
HI[I,J]:-HI[I-1,J+1J;LO(I,JJ:-LO(I-lJ+1J;

END;
COEF:-ILN(INTPT(DIM+I)/INTPT(DIM+I-1));
HIII,DIMI:'.COEF.SUP;LO[IDIMJ:-COEF.INF;

END; (*Matrix generation*)

C:-&I';WHILE C - 'I' DO (*Restart with new initial interval*)
BEGIN
WRITELN( 'ENTER INITIAL INTERVAL');
IREAD(INPUT,HO);

C:-&L';WHILE C - 'L' DO (*Restart with new LAMBDA*)

BEGIN

WRITELN( 'ENTER LAMBDA' );READ(LAMBDA);

FOR 1:ui TO DIM DO
BEGIN

HINF[IJ:-HO.INF;HSUP(IJ:-HO.SUP
END;
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HTFST:inHO.SUP;
GO:-TRUE;ENPTY: FALSE;EXIST:=FALSE; ITER:1 ;WHILE GO DO
BEGIN (*GO Loop*)
(*Update HSUP[1J*)
ALTER: -1;
SUM:m1->(LAMBDA/>(2*DIM)*>SCALP(HI(lJ,HSUP,1));
SUN a1/> SUM;
IF SUM > (HSUP[1J-5.OE-06) THEN ALTER:-ALTER+1;
IF SUM < HSUP[1J THEN HSUP[1J:-SUM;
(*Update HINF[IJ,HSUP[IJ, I - 2..DIM*)
FOR 1:-2 TO DIN DO

BEGIN

SUN:-1/ <SUM;
IF SUM <(HINF[IJ+5.OE-06) THEN ALTER:-ALTER+1;
IF SUN > HINF[IJ THEN HINF[IJ:-SUN;
SUM:ml->(LAMBDA*>I/>(2*DIM))*>SCALP(HI[I],HSUP,1);
SUM:ml/>SUM;
IF SUM > (HSUP[IJ-5.OE-06) THEN ALTER:-ALTER+l;
IF SUM < HSUP[Ij THEN HSUP[IJ:-SUN;
IF HSUP[IJ < HINF[IJ THEN EMPTY:-TRUE;

END; (*Update of HINF[II,HSUP(I] for I - 2..DIM*)
IF EMPTY THEN

BEGIN (*Empty Lntersection*)
WRITELN('EMPTY INTERSECTION AT ITERATION NUMBER ',ITER:3);
WRITELN;WRITELN('FOR LAMBDA - ',LAMBDA:5:2,',');
WRITELN('INTEGRAL EQUATION HAS NO SOLUTION

IN THE INTERVAL HO - [',HO.INF:6:3,',',HO.SUP:6:3,'J');
WRITELN;FOR 1I:1. TO DIN DO
BEGIN (*Improper interval output*)

WRITE('H[',I:2,' I - [ ,HINF[1J:14:11:-1,' , ,HSUP(II:14:11:1,' I');
IF HSUP[IJ < HINF[IJ THEN WRITE(' **INPROPER INTERVAL**');
WRITELN;

END; (*Improper interval output*)
GO:-FALSE;
END; (*Emapty Lntersection*)

IF HSUP(DINJ < HTEST THEN
BEGIN (*Existence*)

EXIST:-TRUE;
WRITELN;WRITELN('FOR LAMBDA - ',LAMBDA:5:2,',');
WRITELN('HYPOTHESES OF SCHAUDER THEOREM VERIFIED AT

ITERATION NUMBER ',ITER:3);
WRITELN('SOLUTION OF INTEGRAL EQUATION IS BOUNDED BY:');WRITELN;
FOR I:-i TO DIM DO (*Output of results*)

BEGIN
WRITELN('H[V,I:2,'J - [' ,HINF[I:8:5:-,',',HSUP[IJ8:5:1,'J');

END; (*Output of results*)
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WRITELN;WRITELN(DO YOU WANT TO ITERATE (Y/N)?');READ(C,C);
IF C <> 'Y' THEN GO:-FALSE ELSE HTEST:=O;

END; (*Existence*)

IF ALTER - 20 THEN
BEGIN (*Convergence*)

GO:-FALSE;
WRITELN;WRITELN('FOR LAMBDA - ',LAMBDA:5:2,',');
WRITELN('INTERVAL ITERATION CONVERGED AT ITERATION

NUMBER ',ITER:3,' TO:');
WRITELN;

FOR I:=l TO DIM DO (*Output of results*)
BEGIN

WRITELN('H[',I:2,'J - f',HINF[lI:8:5:-1,',',HSUP[Ij:8:5:2,'1');
END; (*Output of results*)

WRITELN;
IF EXIST THEN WRITELN('**EXISTENCE OF SOLUTION GUARANTEED**')
ELSE WRITELN('**EXISTENCE OF SOLUTION NOT GUARANTEED**');

END; (*CONVERGENCE*)

ITER:=ITER+l;
END; (*GO Loop*)

WRITELN;
WRITELN('ENTER "I" FOR NEW INTERVAL, "LV FOR NEW LAMBDA, "Q" TO QUIT');
READ(C,C);

END; (*Restart with new LAMBDA*)
END; (*Restart with new initial interval*)

END. (*MAIN PROGRAM*)
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